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Abstract 
This paper will describe methodologies to derive 

color transformations from spectral reflectance factor 

to vector spaces that best approximate the subtractive 

color mixing behavior in working with principal 

component analysis (PCA). This research aims at 

finding an optimal spectral representation for 

digitizing reflective images with high spectral 

accuracy and lower digital storage. This paper will 

also discuss the limitation of Kubelka-Munk Turbid 

Theory for opaque material when applying principal 

component analysis for spectral reconstruction. 

Sample sets from three types of subtractive color 

mixing devices were tested to verify the colorimetric 

and spectral performance of the proposed 

transformations in working with PCA and compared 

to the PCA reconstructed accuracy performed in 

reflectance space and absorption-scattering space by 

Kubelka-Munk Theory. 

 

Introduction 
In the latest multi-spectral reproduction technologies, 

researchers frequently perform Principal Component 

Analysis (PCA) using reflectance factor of color 

samples requiring reproduction.1-11 Often, the number 

of significant dimensions (basis vectors) exceeds the 

number of physical parameters, for example, a 

photographic system requires more than three 

dimensions for spectral reconstruction. This 

contradicts the knowledge that photographic materials 

are manufactured by three known dyes. The use of 

PCA to estimate the reflectance factor makes sense to 

the spectral-capturing applications since a snap-shot is 

to record the linear energy reflected from a colored 

surface.12-14 Nevertheless, the color synthesis by PCA 

using reflectance factor as the representation for 

photographic materials is not optimal since it often 

requires five or more eigenvectors to obtain 

satisfactory reconstruction accuracy hence requires 

five or more channels of digital storage to store the 

reconstruction coefficients together with the five or 

more basis vector information of photographic images. 

However, the recording of spectral information of 

photographic material should be achievable using only 

three channels of digital values and three primary or 

basis vectors if the spectral metrics is other than 

spectral reflectance. Table I shows the spectral and 

colorimetric of the “three” eigenvector reconstruction 

for an IT8.7/2 reflection target of photographic print 

performed in both spectral reflectance and spectral 

absorption spaces (introduced by Kubelka-Munk 

theory discussed in the following sections), where the 

spectral accuracy was quantified by an index of 

metamerism that consists of both a parameric 

correction15 for D50 and the use of CIE9416 under 

illuminant A. The colorimetric accuracy is calculated 

using CIE94 under D50 for the 1931 observer. 
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Table I: The colorimetric and spectral performance of three 

eigenvector reconstruction in both reflectance and absorption 

spaces for an IT8.7/2 reflection target 

 

From Table I, it is apparent that three eigenvector 

reconstruction in reflectance space is not as capable of 

retaining spectral information as that of in absorption 

space. Especially, the large magnitude of maximum 

error of metamerism index (M. I.), vector component 

root-mean-square (RMS) error, and the color different 

in units of ΔE*94 render low confidence of spectral 

information preservation. Unless more eigenvectors 

are used for spectral reconstruction in reflectance 

space, as a consequence, leading to the need of more 

digital storage. On the contrary, the error shown for 

three eigenvector reconstruction in absorption space 

preserves the spectral information with high 

confidence. Therefore, the image information of 

photographic material is better off stored with its 

spectral absorption characteristics from the 

perspective of digital storage. 

  

Motivated by the observation above, transformations 

to account for the real physical dimensions of a set of 

measurements as well as agreeing with the process of 

an opaque coloration is the focus of this paper. The 

spectral density or spectral absorption units are the 

obvious choices of exploring the possibility of lower 

number of basis vector reconstruction of surface 

colored materials.  

 

Kubelka-Munk Turbid Media Theory for 

Subtractive Color Mixing 
The transformation between reflectance factor and the 

absorption coefficient K or the ratio, (K/S) of 
absorption coefficient K to scattering coefficient S 

is often based upon Kubelka-Munk turbid media 

theory.17-18  For the simplicity, the rest of this paper 

will use Φ to representation K or K/S. Equations (1) 

and (2) are used for opaque materials such as acrylic 

or architectural coating paints and textiles, where the 

Rλ,∞ is the spectral reflectance factor of an opaque 

material and λ represents the visible wavelength. 

 

R λ λ λ λ,∞ = + − +1 22Φ Φ Φ , (1) 

 

Φ λ λ λ= − ∞ ∞( ) /, ,1 22R R . (2) 

 

Equations 3 and 4 are used for transparent color layer 

in optical contact with an opaque support such as 

photographic paper, where Rλ,g is the spectral 

reflectance factor of an opaque support and X is the 

thickness of the transparent colorant layer. Equation (4) 

is the inverse transformation of Eq. (3) by assuming 

that the thickness, X, is unity. 
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Hence, the subtractive color synthesis takes the form 

of the linear combination of the Φ of the primary 

colorants modulated by their corresponding 

concentrations or by the linear combination of the 

eigenvectors, eλ,Φ derived from Φ space modulated 

with suitable eigenvector coefficients, b, shown as Eq. 

(5), 
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where, Φλ,mixture is the spectral absorption or 

absorption-scattering coefficient ratio of the 

synthesized color mixture, n is the number of primary 

colorant used for synthesis, c is the primary colorant’s 

concentration, and φ is the absorption or 

absorption-scattering coefficient ratio of a primary 

colorant normalized to its unit concentration. Notice 

that the n number of primary should be identical to the 

number of eigenvector used for synthesis. The 

justification of discarding mean vector term for 

eigenvector reconstruction in Eq. (5) can be seen at 

Tzeng and Berns’ publication in 2005.19 

 

Kubleka-Munk turbid media theory is based on a 

 Reflectance Absorption 

 ΔE*
94 M. I. ΔE*

94 M. I. 

Mean 1.8 0.6 0.5 0.1 

STD 1.5 0.6 0.2 0.1 

Maximum 8.5 3.6 1.0 0.4 

Minimum 0.0 0.0 0.0 0.0 

RMS 0.014 0.006 
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two-flux assumption, that is, the light in the colorant 

layer only become scattered upward or downward. No 

other directional scattering is assumed. Hence, the 

Kubleka-Munk transformation itself is an 

approximation of coloration processes.20-21 Accuracy 

is quite reasonable for photographic materials’ optical 

characteristics modeled by Eqs. (3) and (4). However, 

as this research progressed, it was discovered that the 

transformation for opaque materials does not always 

describe the optical properties of mixtures formed by 

the corresponding coloration. In retrospect, this leads 

to the violation of the two flux assumption. A real 

material most frequently scatters light in all directions 

which causes the failure of Eqs. (1) and (2). 

Furthermore, consider a spectrophotometer measuring 

the surface of a multicolor object. Its field of view 

may cover several color surfaces. In this case, the 

reading of the spectrophotometer is the result of 

spatial averaging more than two reflected color 

energies inside its field of view.22 Hence, the additive 

color mixing has already happened in reflectance 

space. Since the Kubelka-Munk opaque 

transformation is highly nonlinear, the additivity of 

colorant vectors is, therefore, not well defined in Φ 

space.  

 

In dealing with the failure of Kubelka-Munk turbid 

media theory, many more theories utilizing multi-flux 

methods in solving radiation transfer problem have 

been published by a number of authors for improving 

the predicting accuracy.23-27 However, these complex 

models, despite their improved correlation with the 

true optics of colorant mixtures, usually required 

considerable parameter optimization in order to result 

in acceptable accuracy. Based on these reason, this 

research’s intension is to derive a relatively simplified 

empirical transformation which is capable of 

approximating the opaque color mixing behavior. 

 

Deriving a Simplified Empirical 

Transformation for Subtractive Color 

Mixing 
The primary keys for the derivation of an empirical 

space are: obtaining a new colorant vector space with 

reduced dimensionality that corresponds to the 

physical dimensionality of a given sample set; and the 

vector addition and scalar multiplication in new vector 

space should approximately describe the process of 

subtractive opaque coloration. Consider the 

subtractive opaque colorant mixing, the more 

colorants that are added for coloration, the darker the 

resultant mixture is. A vector space formed by adding 

reflectance factors is not realizable for opaque 

colorations. The transformation from R space to the 

proposed subtractive color mixing space for an 

opaque coloration, denoted as Ψ, and its inverse 

transformation were determined and described by 

 
w
1

Ra λλ −=Ψ v , (6) 

 
w)a(R λλ Ψ−= v , (7) 

 

where Ψλ represents the new linear vector of an 

opaque colorant, the av  which resembles to a flat 

spectrum of 1
v

vector is empirically determined from 

a set of subtractive samples requiring reproduction. 

The power term, w, is experientially suggested to be 2 

≤ w ≤ 3 to avoid highly nonlinear inverse 
transformation back to R from Ψ space. The large 

degree of nonlinear inverse transformation amplifies 

the spectral components near zero absorbsivity of 

slight mismatch leading to the unrealizable reflectivity 

needing special treatment to clip the overly amplified 

reflective vector components back to unity for 

colorimetric and spectral performance metrical 

evaluation. This is found to be the limitation of 

utilizing Kubelka-Munk theory for opaque media 

together with eigenvector reconstruction.28 Figure 1 

shows the example of the enhanced spectral error in 

the resultant R space of Kubelka-Munk transformation 

of slight mismatch in low absorbsivity spectral region.  
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Figure 1. An example of enhanced R space spectral error 

reconstructed in Φ space by the Kubelka-Munk transformation 
of Eq. (1) 

The derivation of av is to optimize the av  such that 

the intended number of eigenvectors, say six, 
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generated for the resultant Ψ corresponding to the 

optimized av reaches the maximum spectral 

reconstruction accuracy by using exactly six 

eigenvectors. 

 

The forward and backward transformations for the 

transparent or translucent colorant in optical contact 

with an opaque substrate are show in Eqs. (8) and (9), 

respectively, 

 
w
1

w
1

substrate, RR λλλ −=Ψ , (8) 

 
ww

1

substrate, )R(R λλλ Ψ−= , (9) 

 

where the Rλ,substrate is the spectral reflectance factor of 

a paper or substrate and 2 ≤ w ≤ ∞. The  

 

use of w
1

substrate,Rλ  as the offset vector has a 

significant meaning. Consider that transforming a 

spectrum, which is exactly Rλ,substrate, to the linear 

color mixing space, the result is a zero vector. This 

corresponds to the fact that there is not any primary 

colorant presented in the linear space. Equation (8) 

transforms the spectral reflectance factor to the 

representation for a subtractive color mixing process. 

Hence, the synthesis, quantitatively described by Eq. 

(10), of color mixtures is again the linear 

combinations of the primary colorants modulated by 

their corresponding concentrations or by the linear 

combination of the eigenvectors, eλ,Ψ derived from Ψ 

space modulated with suitable eigenvector 

coefficients, b, shown previously similar to Eq. (5). 

 

∑∑
=

Ψλ
=

λλ ≅ψΨ
n
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i,,i

n

1i
i,imixture, ebc ,  (10) 

 

where ψλ is the linear representation of a primary 

colorant normalized to its unit concentration, c is the 

corresponding concentration, and n is the number of 

the primary colorants. 

 

Experimental and Results 
Three data sets of were used to test the performance of 

the proposed transformation.  

 

Six-Primary Opaque Color Mixtures 
The first set of 105 opaque paint mixtures from six 

linearly independent colorants of yellow, cyan, 

magenta, green, blue, and black (two Sakura poster 

colors and four Pentel poster colors) was generated by 

hand mixing and measured with Macbeth Color-Eye® 

7000 integrating sphere spectrophotometer with 

specular component included. Equation (6) was 

utilized to perform the transformation to the linear 

color mixing space since the data were generated from 

opaque paints. PCA was performed in the reflectance, 

R, the proposed, Ψ, and Kubelka-Munk, Φ, spaces to 

evaluate the colorimetric and spectral performance. 

The w term in Eq. (6) was chosen to be 2 and the 

corresponding av , plotted at Figure 2, was found 

through the optimization using Matlab fmincon 

function. 

 

Table II shows the color and spectral accuracy of six 

eigenvector reconstruction for the three spaces, in 

addition, the accuracy of seven eigenvector 

reconstruction in R space is also shown for 

comparison. It can be seen that the proposed Ψ space 

offers the highest reconstruction accuracy among the 

three. Its RMS error is almost a half of the other two. 

The accuracy rendered by that of R space implies that 

the number of eigenvectors needs to increase to seven 

to achieve the similar accuracy to that of the proposed.   

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. The optimized offset vector in Eqs. (6) and (7) for the 

105 poster color mixtures  
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Table II: The colorimetric and spectral performance of six 

eigenvector reconstruction in R, Ψ, and Φ spaces for the 105 

poster colors. 

 ΔE*
94 M. I.  

Space Mean Max Mean Max RMS 

R with 6 eig 1.0 2.8 0.3 0.7 0.012 

R with 7 eig 0.3 1.1 0.1 0.2 0.006 

Ψ with 6 eig 0.5 1.2 0.2 0.4 0.007 

Φ with 6 eig 0.5 1.9 0.1 0.5 0.012 

 

 

Four-Primary Electro-Photographic (EP) Color 
Mixtures 
 

The second set of 1099 colors uniformly sampling at 

the HP 9500 color MFP’s (Multi-functional-printer) 

printer gamut were used for testing the proposed 

transformations of Eqs. (8) and (9) since the 1099 

samples are transparent-translucent colorants (EP 

toners are often highly scattering) in optical contact 

with a paper substrate by its nature of 

electro-photographic (EP) process. The EP colors 

were printed with primaries of cyan, magenta, yellow, 

black, and AMFM screened halftone pattern. The 

power term w was empirically chosen to be 3.5. The 

colorimetric and spectral performance by four 

eigenvector reconstruction for the R and the proposed 

Ψ space are shown in Table III. The proposed Ψ space 

for this case again provides a better performance with 

four eigenvector reconstruction as oppose to that 

performed in R space. The accuracy of five 

eigenvector reconstruction is also shown to match the 

equivalent spectral performance to that of Ψ 

reconstructed with only four bases. The number of the 

spectra reconstructed using four basis with color error 

of ΔE*
94 larger than 1 in Ψ is 23 and in R space is 129 

out of 1099. The number is reduced to 31 with five 

eigenvector reconstruction in R space. This again 

implies that relatively lack of sufficient dimensions in 

R space to account for large spectral variance by only 

four basis reconstruction.  

 

Table III: The colorimetric and spectral performance of four 

eigenvector reconstruction in R, and Ψ spaces for the 1099 

electro-photographic colors. 

 ΔE*
94 M. I.  

Space Mean Max Mean Max RMS 

R with 4 eig 0.6 2.9 0.1 0.8 0.009 

R with 5 eig 0.4 2.0 0.1 0.3 0.007 

Ψ with 4 eig 0.5 1.8 0.1 0.5 0.006 

 

Six-Primary Digital Commercial Press Color 
Mixtures 
 

The last set of 2457 colors uniformly sampling at the 

HP Indigo commercial digital press’ color gamut 

spanned by printing primaries of cyan, magenta, 

yellow, green, orange, and black were used for testing 

the proposed transformations of Eqs. (8) and (9). The 

colorant of Indigo press is known to be more 

transparent and the color formation of its printing 

process is more linear. The Indigo colors were printed 

with conventional ordered dithered halftone pattern 

with rotated screen angles, where the two extra printer 

primaries of orange and green, are designated to use 

the same screen angles of cyan and magenta, 

respectively, since they are mutually complimentary 

color to each other. The power term w was again 

empirically chosen to be 3.5. The colorimetric and 

spectral performance by six eigenvector 

reconstruction for the R and the proposed Ψ space are 

shown in Table IV. The proposed Ψ space for this set 

of data equips with an excellent spectral performance, 

thus, excellent colorimetric accuracy, with six 

eigenvector reconstruction. Even though the same 

number basis reconstruction in R space offers 

satisfactory spectral and colorimetric accuracy, there 

are still spectra reconstructed with high degree of 

spectral error. The accuracy of eight eigenvector 

reconstruction is also shown to match the equivalent 

spectral performance to that of Ψ reconstructed with 

only six bases. The number of the spectra 

reconstructed using six bases with color error of ΔE*
94 

larger than 1 in R space is 70 out of 2457 and in Ψ is 

none. The number is reduced to none by eight 

eigenvector reconstruction in R space. 
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Table IV: The colorimetric and spectral performance of six 

eigenvector reconstruction in R, and Ψ spaces for the 2457 Indigo 

Digital Press colors. 

 ΔE*
94 M. I.  

Space Mean Max Mean Max RMS 

R with 6 eig 0.4 2.8 0.1 0.5 0.007 

R with 8 eig 0.1 0.5 0.1 0.3 0.004 

Ψ with 6 eig 0.1 0.7 0.1 0.5 0.004 

 

Conclusion 
This research proposes new mathematical 

transformations to linear spaces approximating 

subtractive color mixing. Three types of subtractive 

colorations were used to evaluate the model 

performance from perspective of digital storage in 

conjunction with the required spectral and 

colorimetric accuracy. The proposed absorption or 

density like color mixing space, Ψ, tops the 

reconstruction accuracy performed in reflectance 

space with saving of one to two basis vectors, thus, 

one to two less channels of image storage. This saving 

is significant when an image size is utterly large. 
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